An Optimal Bit-counting Algorithm

MARILYN MACK', GENNADI M. LAPIR?, SIMON BERKOVICH’

' National Aeronautics and Space Administration,

Goddard Space Flight Center
Code 585/ Code 933
Greenbelt, MD 20771
marilyn.j.mack@gsfc.nasa.gov

This paper addresses the omnipresent problem of
counting bits - an operation discussed since the very
early stages of the establishing of computer science,
(see [1]). The need for a quick bit-counting method
acquires a special significance with the proliferation of
search engines on the Internet. It arises in several other
computer applications. This is especially true in
information retrieval in which an array of binary
vectors is used to represent a characteristic function
(CF) of a set of qualified documents. The number of
"I"s in the CF equals the cardinality of the set. The
process of repeated evaluations of this cardinality is a
pivotal point in choosing a rational strategy for deciding
whether to constrain or broaden the search criteria to
ensure selection of the desired items. Another need for
bit-counting occurs when trying to determine the
differences between given files, (images or text), in
terms of the Hamming distance. An Exclusive OR
operation applied to a pair of files results in a binary
vector array of mismatches that must be counted.

The proposed procedure is presumably the best among
the available software methods of bit-counting. It would
retain its value in the future if wide-spread special
realization of bit-counting hardware does not become
cost-effective. Such a fast bit-counting algorithm could
increase the speed at relatively low cost and should
have a spillover effect on the overall higher operation's
speed.

How did the proposed method evolve? It began with a
study of existing approaches. Formally, the bit-counting
problem can be presented as follows: given an array of
binary vectors, it is necessary to determine how many
"I's it contains. Despite the apparent simplicity of the
task, this problem is associated with interesting
algorithmic issues and important applications. (See [2])
The few basic methods used to date are simple in
concept with various degrees of efficiency. They are:

(1) Table Lookup (TL) The counting of the bits is done
using a table that contains the pre-calculated quantities

2 ZERES GmbH Universiteatstrasse 142,
44799 Bochum, Germany,
lapir@zeres.de

Department of Computer Science,

School of Engineering and Applied Science,
George Washington University,
Washington, DC, USA,
berkov@seas.gwu.edu

of "1"s for each entry. The time for getting this number
in one access would be comparable to the time for a
direct hardware realization of the task. However,
operating with words of 32 bits would require a
prohibitively large array of 2*2 bytes. Thus, though it
is fast, Single-fetch Table Lookup (TL1) is not as yet
practical. Moreover, it becomes impossible when one
considers the near-term prospect of 64 bit words. But
considering the given word divided into two or four
parts can decrease the size of the look-up table. So, for
32 bit words, the size of the required look-up table can
be less, correspondingly, 2'® (Double Lookup or TL2)
and 2% words (Quadruple Lookup or TL4). However,
using either of these methods slows down bit-counting
since each requires extra accesses, additions, and
shifting operations.

(2) Shifting (SH) The simplest and most natural
method of counting "I"s in an n-bit number is the
Shifting (SH) method in which each of the bits is
effectively examined by shifting, i.e. given a test array,
C, of n vectors each of length w, each of the n
components would separately count "1"s using w shifts
for its length w, for all n vectors. This method is
straightforward but its execution time is in direct
proportion to nw. As such, it would not be efficient for
large sparse arrays.

(3) Algebraic Logic (AL) A faster bit sum algorithm,
described in [1] and [2], makes use of the way in which
arithmetic is performed on most computers. The
procedure repeatedly re-calculates the number as the
logical sum, ANDing, of the current value of the
number and its decrement by one until the result
becomes zero. Thus its timing is in direct proportion to
the number of set bits rather than to the full machine
word size, (as is the case with SH).

(4) Vertical Counting (VC) The idea of vertical
transformations has been realized in _a_ radical
development in computer architecture - the STARAN
computer of the Goodyear Corporation [3][4]. The VC

method can be considered as an emulation of addition
for 32 bit registers. The XOR (Exclusive OR) gate
determines corresponding characters that mismatch
while AND gates generate carries. VC incorporates
these concepts into a software equivalent. Initially, as
with the haif-adder, the carry bits (the higher level
positions) in the vertical vector are zero. The sum value

is determined by bit XORing the current value of the

vertical counter, v_c[i], with the carry bit for position
zero. Then the new value of the next power of two
vertical counter vector, v_c[i+1], is determined by bit
ANDing the current value of that vector with the
calculated carry value from v_c[i] to create both a new
value for v_c[i+1] and a new carry value. Repeating the
ANDing and ORing through successively higher
powers of two until the calculated carry value is zero
continues this carry propagation. This method is
depicted in Figure 1. The utilization of vertical format
in bit-counting as expressed in VC has previously been
described in [5].

Typical timing test results for most basic methods, AL,
VC, TLI, TL2, and TL4 compared with the ideal
(represented by a 32-bit machine software emulation of
a perfect hardware implementation) for various
percentages of randomly set bits (from 0 through 100%
in steps of 10) revealed that, the TL methods were most
consistently low (Figure 2). But, as discussed, they
were not practical. Clearly a faster method was
required. The initial bit counting method, VC, had
involved counting the bits and then converting the
contents of the Vertical Counter into regular horizontal
format. However it was not very fast, O(nlogn). This
was due to the penalties incurred in dense situations in
which extra work is required to approach zero. If the
counting was performed earlier than in VC and was
done using the faster AL method rather than the SH
approach, and if tests for zero were inserted to satisfy
sparse cases, time could clearly be saved. This idea
resulted in the Lower-bit Sieve (LS) Algorithm. The
suggested LS combines the best characteristics of the
VC with those AL. The algorithm operates as follows.
First, the incoming binary vector enters the "Sieve" - a
Vertical Counter of a fixed small number of stages.
Suppose this number were 2. This provides 32 2-bit
registers that become mod 4 counters. These counters
operate as a sieve retaining 2 low-bits and submitting
overflows to the next stage. Thus the next stage only
has to count the bits in quadruplets. As a result,
counting at this stage can take advantage of the faster
operation of the AL technique in sparse vectors. Since
the number of stages in the sieve is small, it can be
presented as a "flat” sequence of instructions rather than
a loop. The time penalty for denser numbers in the AL
method is removed by providing for the AL counting of
the "1"s only in the Vertical Counter array, (which is
less than those which had been in the original number),

2

without any significant loss of time for the more sparse
cases. In the same way, the slower part of the VC
method, the final count, is improved. It should also be
noted that studies reveal a tendency for the bits
randomly set to one to be evenly distributed as the
number of candidate words increases. Thus similar time
penalties, either proportional to word length as in SH or
to bits set as in AL, associated with counting this denser
Vertical-Counter number would ordinarily be incurred.
But through by-passing the calculation of all carries
beyond some point, and then AL counting the set carry
bits represented at that point, density time difficulties
would be avoided.

Several tests were made to validate these theories.

These tests were to be designated as LSj k where j was

the power of the highest carry which could ever be

calculated in this instantiation, and k was the number of
inserted zero tests. In these tests, the complete Lower-

bit Sieve (LS) family included second through seventh

carries, {designated as j=2 through 7), and inserted

additional tests for zero to reduce the sparse case

processing time, (designated as k=0 through 6). Clearly,

all members of this LS family of methods would

eliminate time counting all bits and would only count

combinations of bits. The overall effect of this
combination would result in the fastest method of all.

The presented LS technique, depicted in Figure 3, has a
definite advantage for sparse vectors. This means that
in the case of dense vectors, it would be beneficial to
count "0" bits rather than "1" bits. In general, when the

bit-distribution of binary vectors is not known, the
utilization of this circumstance is uncertain. However,
in the case of information retrieval, certain patterns in
bit-distribution have been observed. Namely, most of
the searching requests result either in "success" - small

exceedingly many retrieved items. This suggests the
following strategy for the evaluation of the
characteristic vectors: to count "i"s and "0"s
simultaneously. Counting "0" is done by logically
ANDing the number and its increment until the result is
all "1"s and then subtracting the determined count from
the bit-length of the array. The first count process to
finish terminates the other. As both processes run
simultaneously, they can benefit from intrinsic
instruction level parallelism inherent to modern
microprocessors. The actual results of these simulations
were consistent with predicted results. Tt turns out that
up to the sparsity of about 15%, the combined method

retrieval systems.

The results of completed experiments for various
implementations of each level in the family of LS
methods were normalized relative to the ideal (Figure

4). These tests confirmed the strengths of the algorithm
by showing a close simulation in time for the assumed
fastest "ideal” method. LS6_4, for example, required
approximately 1.8 times the speed of ideal while AL
had required 9.7 times that same value. Though no one
LS level was significantly higher for all possible
distributions of ones tested individually, what emerged
was the fact that the average dispersion of ones for a
particular application, i.e. whether the vectors were
sparse, often determined which one of the various LS
methods tested was the best. As such, the choice is
application specific. Additional tests on a native 64 bit
CRAY machine confirmed the algorithm’s
independence from word size.

Why does this proposed procedure perform so well?
The algorithm is close to hardware in spirit. It
incorporates principles of vertical approaches with
Instruction Level Parallelism (ILP). It also compares
well with the ideal implementations of bit-counting in
super-computers as represented by the HPF function
popent(). Thus the current speed gain due to the
suggested Lower-Bit Sieve family of methods would
enable an efficient automatic retrieval of qualifying
records through automatic, fast tolerance threshold
adjustment. Such criteria modification, performed
without the need to engage the user, could quickly and
automatically tighten restrictions when too vast an
amount of data qualified and loosen them if little or no
data was secured. So tolerable, user-friendly access to
information would be enabled while accuracy and
speed are maintained within reasonable limits.

In conclusion, this paper presents a faster approach to
bit-counting that should, through spillover effects,
improve overall performance of higher level operations
in which it is used.

REFERENCES

[1] Derrick H. Lehmer, The Machine Tools of
Combinatorics, in Applied Combinatorial
Muathematics,

Edwin F. Beckenbach [Ed.], (New York, NY:
John Wiley and Sons, Inc., 1964).
[2] Edward M. Reingold, Jurg Nievergelt, and
Narsingh Deo, Combinatorial Algorithms
Theory and Practice, (Englewood Cliffs, NIJ:

Prentice-Hall, Inc., 1977).

[3] Kenneth J. Thurber and Leon D. Wald, Associative
and Parallel Processors, Computing Surveys,

(New York, NY: ACM, vol. 7, No. 4, December,
1975, pp. 215-255).

[4] Kenneth E. Batcher, The Multidimensional Access

Memory in STARAN, /EEE Transactions on
Computers, (New York, NY: IEEE, vol. C-26, No.
2, February, 1977, pp. 174-177).

3

[5] Simon Berkovich, Eyas El-Qawasameh, Gennadi
M. Lapir, Marilyn Mack, Christopher Zincke,
“QOrganization of Near Matching in Bit Attribute
Matrix Applied to Associative Access
Methods in
Information Retrieval”, I6th
IASTEDInternational Conference on Applied
Informatics, (Garmisch-Partenkirchen:
TASTED, February 23-25, 1998).

Vertical Counter (V) Input array (B)
v e 21 0

oflolt 1

of o] || <a—— [0} Bl1I
olfo] o 1
ollo]10 1
t 1

sum;: 0] BI2]
V[0]*BIi] 0
1 1
1 —
1 1

o B3I
carry: 1
V{0]&BIi] ll 0
0

1]BIn]
0
L]

Figure 1: Organization of Vertical Counting (VC)

20
=1
&
3 411
w15 Wﬂ" mr‘]
L4 — s AL]]
= p a —e¥/C
S 10 —p—T 14
© [
o 4

w
N

0

D 10 20 30 40 S0 60 70 80 90 100

Bit Density

Figure 2: Performance of the basic bit counting
techniques (normalized to the ideal case: emulated
popcnt)

Horizontal Counter

Vertical Counter (V) Input array (B)
1 0

v_c
... 1oljo 1
o [o] |1 | <e—— o] BI1I
0o1]0 1
0110 1
Lower-bit N
Sieve (LS
5 ol Bi21
' 0
g td I
/\,\’\’\’\‘\."\x
/: AL t. =
¢.Operation_ - 1
RN RRRN 0 B[3}
AR 1
0
-
0
1]Bin]
0
1

Figure 3: Model of Lower bit Sieve (LS) - Options for
Vertical Counting method (upper arrow counting all
values) and Lower bit Sieve Method (lower arrow
counting values more efficiently)

25
o0
3 1520
o 1531
w15 3
) ... LS4
= [- 1553
<10 1564
s e J573
~4

s

of- _

¢ 710 20 30 40 S0 60 70 80 90 100
Bit Density

Figure 4: Performance of the family of Lower bit Sieve
algorithms (normalized fo the ideal case: emulated

popcnt)

